Properties of Context-Free Languages

An easy way to prove a bunch of properties of Context-Free languages is through the idea of a *substitution*. Let Σ be a finite alphabet and suppose that for each letter a in Σ we have a language S(a). If $w=a_1...a_n$ is a string in Σ^* we can say that S(w) is the concatenation $S(a_1)...S(a_n)$. If L is a language over Σ we say that $S(L) = \bigcup_{w \in L} S(w)$

For example, if we let $\Sigma = \{0,1\}$ and $S(0) = \{a^nb^n \mid n > = 1\}$ and $S(1) = \{a^n \mid n > = 1\}$ then $S(001) = \{a^nb^na^mb^ma^k \mid n,m,k > = 1\}$

Theorem: If \mathcal{L} is a context-free language over Σ and S(a) is context-free for each a in Σ , then $S(\mathcal{L})$ is context-free.

Proof: Start with the grammars for each S(a) and rewrite them so they have no nonterminal symbols in common. Take a Chomsky Normal Form grammar for ${\cal L}$ and rewrite it so it has no nonterminal symbols in common with any of the S(a) grammars. Each grammar rule for \mathcal{L} has either the form A => BC or A => a. Replace each A => a rule by A => Start(a), where Start(a) is the start symbol for the S(a) grammar. This gives a context free grammar for $S(\mathcal{L})$. (Two simple inductions show that this grammar derives wif and only if wis in $S(\mathcal{L})$.

Theorem: If languages \mathcal{L}_1 and \mathcal{L}_2 are context-free then so are $\mathcal{L}_1 \cup \mathcal{L}_2$, $\mathcal{L}_1 \mathcal{L}_2$ and $(\mathcal{L}_1)^*$.

Proof: Let Σ be $\{0,1\}$, let $S(0)=\mathcal{L}_1$ and let $S(1)=\mathcal{L}_2$. Then

- a) $\{0,1\}$ is context-free, and $S(\{0,1\}) = \mathcal{L}_1 \cup \mathcal{L}_2$.
- b) {01}) is context-free, and $S({01}) = \mathcal{L}_1 \mathcal{L}_2$
- c) 0^* is context-free and $S(0^*) = (\mathcal{L}_1)^*$.

However, note that context-free languages are not closed under intersection.

Example: Let $\mathcal{L}_1 = \{0^n 1^n 2^j \mid n,j >= 0\}$ and let $\mathcal{L}_2 = \{0^k 1^m 2^m \mid k,m >= 0\}$ These are both context-free languages but $\mathcal{L}_1 \cap \mathcal{L}_2 = \{0^n 1^n 2^n \mid n >= 0\}$ and this is not context-free.

Note that this tells us that complements and differences of context-free languages are not necessarily context-free, for if they were intersections would also be context-free.

Theorem: If \mathcal{L} is context-free and \mathcal{R} is regular, then $\mathcal{L} \cap \mathcal{R}$ is context-free.

Proof: Start with a PDA that accepts \mathcal{L} by final state and a DFA that accepts \mathcal{R} . Make a new PDA whose states are pairs of states from \mathcal{L} and \mathcal{R} . If \mathcal{L} has transition $\delta(q,a,X)=(q',y)$ and \mathcal{R} has transition $\delta(r,a)=r'$ then make transition for the new PDA $\delta((q,r),a,X)=((q',r'),Y)$. The final states of the new PDA are $\{(q,r) \mid q \text{ is final for } \mathcal{L} \text{ and } r \text{ is final for } \mathcal{R}\}$ This new PDA accepts string w if and only if w is accepted by both \mathcal{L} and \mathcal{R} .

Why can't we do this with 2 PDAs?

Theorem: If \mathcal{L} is context-free and \mathcal{R} is regular then \mathcal{L} - \mathcal{R} is context-free.

Proof: \mathcal{L} - \mathcal{R} = $\mathcal{L} \cap \mathcal{R}^c$ and \mathcal{R}^c is regular.

Theorem: If \mathcal{L} is context-free then \mathcal{L}^{rev} is also context-free.

Proof: Start with a Chomsky Normal Form grammar for \mathcal{L} . Replace any rule A => BC with the rule A => CB. An induction on the length of derivations shows that this is a grammar for \mathcal{L}^{rev} .

See example next slide

For example, a grammar for $\{a^nb^m | n>0, m>=0\}$ is A=>AB | AA | a B=>BB | b

The grammar

creates the language $\{b^ma^a | n>0, m>=0\}$

Here is an example of a language that is pumpable but not context-free. This is just a variation of the language that was pumpable in the regular sense but not regular:

 $\mathcal{L} = \{a^i b^j c^k d^l \mid i,j,k,l \ge 0 \text{ and if } i=1 \text{ then } j=k=l\}$

First, if \mathcal{L} was context-free then, since $ab^*c^*d^*$ represents a regular language, the intersection $\mathcal{L} \cap ab^*c^*d^* = \{ab^jc^jd^j \mid j>=0\}$ would also have to be context-free, which it clearly isn't.

(continued next slide)

Second, note that \mathcal{L} is the union of three languages:

$$\mathcal{L}_0 = \{b^j c^k d^l \mid j, k, l >= 0\} = b^* c^* d^*$$

 $\mathcal{L}_1 = \{ab^j c^j d^j \mid j, k, l >= 0\}$
 $\mathcal{L}_2 = \{a^i b^j c^k d^l \mid i >= 2, j, k, l >= 0\} = a^2 a^* b^* c^* d^*$

Note that \mathcal{L}_0 and \mathcal{L}_2 are regular, so they are certainly pumpable. \mathcal{L}_1 is not pumpable in itself, but if we take any string z in \mathcal{L}_1 , such as $z=ab^jc^jd^j$ we can let $u=\varepsilon$, v=a, $w=x=\varepsilon$, $y=b^jc^jd^j$. Then z=uvwxy and $uv^nwx^ny=a^nb^jc^jd^j$. is an elements of \mathcal{L} for every n. So every long string in \mathcal{L} can be pumped; the pumping constant for \mathcal{L} is the longer of the constants for \mathcal{L}_0 and \mathcal{L}_2 .

Decision Algorithms for Context-Free Languages:

We can determine if a given string w is in a given context-free language: convert the grammar to CNF and generate all possible parse trees of height |w|-1. Since a binary tree of height n has at least n+1 leaves, this will find all strings in the language of length |w| or less.

We can determine if a context-free language is empty or infinite; these are homework questions.

Most other questions regarding context-free languages are undecidable, including:

- Are two context-free languages the same?
- Is the intersection of two context-free languages empty?
- Is a context-free language Σ^* ?
- Is a given grammar ambiguous?
- Is a given language inherently ambiguous?